Page 58 - Wirkung-von-nichtionisierender-Strahlung-NIS-auf-Arthropoden
P. 58

[182] [183]
[184]
[185]
[186] [187] [188] [189]
[190]
[191] [192]
J. Wyszkowska, M. Jankowska, et M. Stankiewicz, « Comprehensive study of the effects of electromagnetic field exposure on nervous system using insect models », sept. 2018. doi: 10.23919/emf-med.2018.8526060.
Z. Proli􏰀, R. Jovanovi􏰀, G. Konjevi􏰀, et B. Jana􏰀, « Behavioral Differences of the InsectMorimus funereus (Coleoptera, Cerambycidae) Exposed to an Extremely Low Frequency Magnetic Field », Electromagn. Biol. Med., vol. 22, no 1, p. 63‐73, janv. 2003, doi: 10.1081/jbc-120020358.
D. Zmejkoski, B. Petkovi􏰀, S. Pavkovi􏰀-Lu􏰁i􏰀, Z. Proli􏰀, M. An􏰂elkovi􏰀, et T. Savi􏰀, « Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity », Int. J. Radiat. Biol., vol. 93, no 5, p. 544‐552, mai 2017, doi: 10.1080/09553002.2017.1268281.
D. Dimitrijevi􏰀, T. Savi􏰀, M. An􏰂elkovi􏰀, Z. Proli􏰀, et B. Jana􏰀, « Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura », Int. J. Radiat. Biol., vol. 90, no 5, p. 337‐343, mai 2014, doi: 10.3109/09553002.2014.888105.
Z. M. Proli􏰀 et V. Nenadovi􏰀, « The influence of a permanent magnetic field on the process of adult emergence in Tenebrio molitor », J. Insect Physiol., vol. 41, no 12, p. 1113‐1118, déc. 1995, doi: 10.1016/0022-1910(95)00061-X.
M. A. Seada, S. E. Elkholy, et W. S. Meshrif, « Does the cellphone radio-frequency electromagnetic radiation during ringing or talking modes induce locomotor disturbance {inDrosophila} melanogaster? », Afr. Zool., vol. 51, no 1, p. 53--60, 2016. V.BindokasetB.Greenberg,«Biologicaleffectsofa765-{kV},60-Hztransmissionline on honey bees (Apis mellifera L.): Hemolymph as a possible stress indicator », Bioelectromagnetics, vol. 5, no 3, p. 305--314, 1984.
R. Goodman, D. Weisbrot, A. Uluc, et A. Henderson, « Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to low-frequency electromagnetic fields: Analysis of chromosome 3R », Bioelectromagnetics, vol. 13, no 2, p. 111‐118, 1992, doi: 10.1002/bem.2250130205.
P. Migdał, A. Roman, A. Strachecka, A. Murawska, et P. Bie􏰃kowski, « Changes of selected biochemical parameters of the honeybee under the influence of an electric field at 50 Hz and variable intensities », Apidologie, vol. 51, no 6, p. 956‐967, déc. 2020, doi: 10.1007/s13592-020-00774-1.
J. Maliszewska, P. Marciniak, H. Kletkiewicz, J. Wyszkowska, A. Nowakowska, et J. Rogalska, « Electromagnetic field exposure (50~Hz) impairs response to noxious heat in American cockroach », J. Comp. Physiol. A, vol. 204, no 6, p. 605--611, 2018.
D. Todorovi􏰀 et al., « Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field », Environ. Sci. Pollut. Res., vol. 22, no 7, p. 5305‐5314, avr. 2015, doi: 10.1007/s11356-014-3910-8.
Korrigierte Version des Berichts nach der Korrektur vom 10.01.2023. Anpassung auf Seite 3, Zeile 14: 0 - 100 kHz statt 0 - 10 kHz, (0 - 100 kHz, 100 kHz - 6 GHz, 6 GHz - 300 GHz).
55

















































































   56   57   58   59   60