Page 54 - Wirkung-von-nichtionisierender-Strahlung-NIS-auf-Arthropoden
P. 54

Exposure Assessment», IEEE Access, vol. 8, p. 204068‐204075, 2020, doi: 10.1109/ACCESS.2020.3036977.
B. Selmaoui, P. Mazet, P. Petit, K. Kim, D. Choi, et R. Seze, « Exposure of South Korean Population to 5G Mobile Phone Networks (3.4–3.8 GHz)», Bioelectromagnetics, vol. 42, no 5, p. 407‐414, juill. 2021, doi: 10.1002/bem.22345.
S. Aerts et al., « In Situ Assessment of 5G NR Massive MIMO Base Station Exposure in a Commercial Network in Bern, Switzerland », Appl. Sci., vol. 11, no 8, p. 3592, avr. 2021, doi: 10.3390/app11083592. G.Vorobyov,L.Vietzorreck,I.Barsuk,etA.Rybalko,TheDiffractionofElectromagnetic Waves on the Periodic Heterogeneities and Its Use for Realization of Practical Technical and Electronic Devices of Millimeter and Submillimeter Wavelength Range. IntechOpen, 2012. doi: 10.5772/50694.
D. Lupi et al., « Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure », Insects, vol. 12, no 8, p. 716, août 2021, doi: 10.3390/insects12080716.
P. Arias et al., « Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary », 2021.
D. González‐Tokman, A. Córdoba‐Aguilar, W. Dáttilo, A. Lira‐Noriega, R. A. Sánchez‐ Guillén, et F. Villalobos, «Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world », Biol. Rev., vol. 95, no 3, p. 802‐821, juin 2020, doi: 10.1111/brv.12588.
J. G. Kingsolver, S. E. Diamond, et L. B. Buckley, « Heat stress and the fitness consequences of climate change for terrestrial ectotherms », Funct. Ecol., vol. 27, no 6, p. 1415‐1423, déc. 2013, doi: 10.1111/1365-2435.12145.
J. Krauss et al., « Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels: Immediate and time-delayed biodiversity loss», Ecol. Lett., vol. 13, no 5, p. 597‐605, avr. 2010, doi: 10.1111/j.1461- 0248.2010.01457.x.
S. Seibold et al., « Arthropod decline in grasslands and forests is associated with landscape-level drivers », Nature, vol. 574, no 7780, p. 671‐674, oct. 2019, doi: 10.1038/s41586-019-1684-3.
C. A. Hallmann, A. Ssymank, M. Sorg, H. de Kroon, et E. Jongejans, « Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community », Proc. Natl. Acad. Sci., vol. 118, no 2, p. e2002554117, janv. 2021, doi: 10.1073/pnas.2002554117. C.A.Hallmannetal.,«Morethan75percentdeclineover27yearsintotalflyinginsect biomass in protected areas », PLOS ONE, vol. 12, no 10, p. e0185809, oct. 2017, doi: 10.1371/journal.pone.0185809.
A. C. S. Owens, P. Cochard, J. Durrant, B. Farnworth, E. K. Perkin, et B. Seymoure, « Light pollution is a driver of insect declines », Biol. Conserv., vol. 241, p. 108259, janv. 2020, doi: 10.1016/j.biocon.2019.108259. P.Soroye,T.Newbold,etJ.Kerr,«Climatechangecontributestowidespreaddeclines among bumble bees across continents », Science, vol. 367, no 6478, p. 685‐688, févr. 2020, doi: 10.1126/science.aax8591.
R. van Klink, D. E. Bowler, K. B. Gongalsky, A. B. Swengel, A. Gentile, et J. M. Chase, « Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances», Science, vol. 368, no 6489, p. 417‐420, avr. 2020, doi: 10.1126/science.aax9931.
C. A. Halsch et al., « Insects and recent climate change », Proc. Natl. Acad. Sci., vol. 118, no 2, p. e2002543117, janv. 2021, doi: 10.1073/pnas.2002543117.
P. H. Raven et D. L. Wagner, « Agricultural intensification and climate change are rapidly decreasing insect biodiversity », Proc. Natl. Acad. Sci., vol. 118, no 2, p. e2002548117, janv. 2021, doi: 10.1073/pnas.2002548117.
[114] [115] [116]
[117] [118] [119]
[120] [121]
[122] [123]
[124] [125] [126] [127]
[128] [129]

   52   53   54   55   56