Page 53 - Wirkung-von-nichtionisierender-Strahlung-NIS-auf-Arthropoden
P. 53

[97] Md. S. Islam, « Calcium Signaling: From Basic to Bedside », in Calcium Signaling, vol. 1131, Md. S. Islam, Éd. Cham: Springer International Publishing, 2020, p. 1‐6. doi: 10.1007/978-3-030-12457-1_1.
[98] Y. Moran, M. G. Barzilai, B. J. Liebeskind, et H. H. Zakon, « Evolution of voltage-gated ion channels at the emergence of Metazoa », J. Exp. Biol., vol. 218, no 4, p. 515‐525, févr. 2015, doi: 10.1242/jeb.110270.
[99] F. Bertagna, R. Lewis, S. R. P. Silva, J. McFadden, et K. Jeevaratnam, « Effects of electromagnetic fields on neuronal ion channels: a systematic review », Ann. N. Y. Acad. Sci., vol. 1499, no 1, p. 82‐103, sept. 2021, doi: 10.1111/nyas.14597.
[100] A.WoodetK.Karipidis,«RadiofrequencyFieldsandCalciumMovementsIntoandOut of Cells », Radiat. Res., vol. 195, no 1, nov. 2020, doi: 10.1667/RADE-20-00101.1.
[101] L. A. Golbach et al., « Calcium homeostasis and low-frequency magnetic and electric field exposure: A systematic review and meta-analysis of in vitro studies », Environ. Int., vol. 92‐93, p. 695‐706, juill. 2016, doi: 10.1016/j.envint.2016.01.014.
[102] M. K. Moghadam, M. Firoozabadi, et M. Janahmadi, « Effects of weak environmental magnetic fields on the spontaneous bioelectrical activity of snail neurons », J. Membr. Biol., vol. 240, no 2, p. 63‐71, mars 2011, doi: 10.1007/s00232-011-9344-z.
[103] I. Marchionni et al., « Comparison between low-level 50 Hz and 900 MHz electromagnetic stimulation on single channel ionic currents and on firing frequency in dorsal root ganglion isolated neurons », Biochim. Biophys. Acta BBA - Biomembr., vol. 1758, no 5, p. 597‐605, mai 2006, doi: 10.1016/j.bbamem.2006.03.014.
[104] W.N.Ross,«Understandingcalciumwavesandsparksincentralneurons»,Nat.Rev. Neurosci., vol. 13, no 3, p. 157‐168, mars 2012, doi: 10.1038/nrn3168.
[105] D. J. Panagopoulos et L. H. Margaritis, « Mobile telephony radiation effects on living organisms », in Radiation Exposure in Medicine and the Environment: Risks and Protective Strategies, Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15784, Athens, Greece, 2011, p. 185‐228. [En
ligne]. Disponible sur: 84892009543&partnerID=40&md5=86dbe1e156c8b8a06f8aa529137e09c9
[106] L. Makinistian, D. J. Muehsam, F. Bersani, et I. Belyaev, « Some recommendations for experimental work in magnetobiology, revisited: Recommendations for Magnetobiology Research», Bioelectromagnetics, vol. 39, no 7, p. 556‐564, oct. 2018, doi: 10.1002/bem.22144.
[107] W. Joseph, L. Verloock, F. Goeminne, G. Vermeeren, et L. Martens, « Assessment of {RF} Exposures from Emerging Wireless Communication Technologies in Different Environments », Health Phys., vol. 102, no 2, p. 161--172, 2012.
[108] D.Colombi,B.Thors,etC.Tornevik,«Implicationsof{EMF}ExposureLimitsonOutput Power Levels for 5G Devices Above 6~{GHz} », IEEE Antennas Wirel. Propag. Lett., vol. 14, p. 1247--1249, 2015.
[109] C. W. Jackson, E. Hunt, S. Sharkh, et P. L. Newland, « Static electric fields modify the locomotory behaviour of cockroaches », J. Exp. Biol., vol. 214, no 12, p. 2020‐2026, juin 2011, doi: 10.1242/jeb.053470.
[110] L. Li, M. C. Vuran, et I. F. Akyildiz, « Akyildiz, Characteristics of underground channel for wireless underground sensor networks », 2007.
[111] R. L. van Dam, B. Borchers, et J. M. H. Hendrickx, « Methods for prediction of soil dielectric properties: a review », Orlando, Florida, USA, juin 2005, p. 188. doi: 10.1117/12.602868.
[112] X. Yu, P. Wu, Z. Zhang, N. Wang, et W. Han, « ELECTROMAGNETIC WAVE PROPAGATION IN SOIL FOR WIRELESS UNDERGROUND SENSOR NETWORKS», Prog. Electromagn. Res. M, vol. 30, p. 11‐23, 2013, doi: 10.2528/PIERM12110609.
[113] P. Joshi, F. Ghasemifard, D. Colombi, et C. Tornevik, « Actual Output Power Levels of User Equipment in 5G Commercial Networks and Implications on Realistic RF EMF

   51   52   53   54   55