Page 50 - Wirkung-von-nichtionisierender-Strahlung-NIS-auf-Arthropoden
P. 50

[45] M. C. Rosi et al., « Emigration Effects Induced by Radio Frequency Treatment to Dates Infested by Carpophilus hemipterus », Insects, vol. 10, no 9, p. 273, août 2019, doi: 10.3390/insects10090273.
[46] J. ONDRÁ􏰀EK, J. ŽDÁREK, V. LANDA, et J. DATLOV, « Importance of antennae for orientation of insects in a non-uniform microwave electromagnetic field », Nature, vol. 260, no 5551, p. 522‐523, avr. 1976, doi: 10.1038/260522a0.
[47] M. Fr􏰁tczak et al., « Infected Ixodes ricinus ticks are attracted by electromagnetic radiation of 900 MHz », Ticks Tick-Borne Dis., vol. 11, no 4, p. 101416, juill. 2020, doi: 10.1016/j.ttbdis.2020.101416.
[48] B. Vargová et al., « Electromagnetic radiation and behavioural response of ticks: an experimental test », Exp. Appl. Acarol., vol. 75, no 1, p. 85‐95, mai 2018, doi: 10.1007/s10493-018-0253-z.
[49] J. Wyszkowska, S. Shepherd, S. Sharkh, C. W. Jackson, et P. L. Newland, « Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts », Sci. Rep., vol. 6, no 1, nov. 2016, doi: 10.1038/srep36413.
[50] A. H. Poh et al., « Effects of low-powered RF sweep between 0.01-20 GHz on female Aedes Aegypti mosquitoes: A collective behaviour analysis », PLOS ONE, vol. 12, no 6, p. e0178766, juin 2017, doi: 10.1371/journal.pone.0178766.
[51] C. G. Liddle et al., « Effect of 9.6-{GHz} pulsed microwaves on the orb web spinning ability of the cross spider (Araneus diadematus) », Bioelectromagnetics, vol. 7, no 1, p. 101--105, 1986.
[52] P. Bartos, R. Netusil, P. Slaby, D. Dolezel, T. Ritz, et M. Vacha, « Weak radiofrequency fields affect the insect circadian clock », J. R. Soc. Interface, vol. 16, no 158, p. 20190285, sept. 2019, doi: 10.1098/rsif.2019.0285.
[53] G. Fedele, E. W. Green, E. Rosato, et C. P. Kyriacou, « An electromagnetic field disrupts negative geotaxis in Drosophila via a {CRY}-dependent pathway », Nat. Commun., vol. 5, no 1, 2014, Consulté le: 1 janvier 7apr. J.-C. [En ligne]. Disponible sur:
[54] S. Shepherd, C. W. Jackson, S. M. Sharkh, H. Aonuma, E. E. Oliveira, et P. L. Newland, « Extremely Low-Frequency Electromagnetic Fields Entrain Locust Wingbeats », Bioelectromagnetics, vol. 42, no 4, p. 296‐308, avr. 2021, doi: 10.1002/bem.22336.
[55] C. Wan, A. Yao, et L. Van Gool, « Direction matters: hand pose estimation from local surface normals », avr. 2016, Consulté le: 19 avril 2019. [En ligne]. Disponible sur:
[56] M. C. Pereira, I. de C. Guimarães, D. Acosta-Avalos, et W. F. A. Junior, « Can altered magnetic field affect the foraging behaviour of ants? », PLOS ONE, vol. 14, no 11, p. e0225507, nov. 2019, doi: 10.1371/journal.pone.0225507.
[57] M.-C. Cammaerts, Z. Rachidi, F. Bellens, et P. D. Doncker, « Food collection and response to pheromones in an ant species exposed to electromagnetic radiation », Electromagn. Biol. Med., vol. 32, no 3, p. 315‐332, janv. 2013, doi: 10.3109/15368378.2012.712877.
[58] N. G. Lopatina, T. G. Zachepilo, N. G. Kamyshev, N. A. Dyuzhikova, et I. N. Serov, « Effect of Non-Ionizing Electromagnetic Radiation on Behavior of the Honeybee, Apis mellifera L. (Hymenoptera, Apidae) », Entomol. Rev., vol. 99, no 1, p. 24--29, 2019.
[59] V. P. Sharma et N. R. Kumar, « Changes in honeybee behaviour and biology under the influence of cellphone radiations », Curr. Sci., vol. 98, no 10, p. 1376‐1378, 2010.
[60] Y. Erdo􏰂an et M. M. Cengiz, « Effect of Electromagnetic Field (EMF) and Electric Field
(EF) on Some Behavior of Honeybees (Apis mellifera L.)», avr. 2019, doi:
[61] V. P. Bindokas, J. R. Gauger, et B. Greenberg, « Laboratory investigations of the
electrical characteristics of honey bees and their exposure to intense electric fields »,
Bioelectromagnetics, vol. 10, no 1, p. 1--12, 1989.
[62] D. D. Wiegmann, P. Casto, E. A. Hebets, et V. P. Bingman, « Distortion of the local
magnetic field appears to neither disrupt nocturnal navigation nor cue shelter

   48   49   50   51   52